
Public

SMART CONTRACT AUDIT REPORT

for

Stader FTMStaking

Prepared By: Patrick Lou

PeckShield
April 19, 2022

1/18 PeckShield Audit Report #: 2022-123

contact@peckshield.com

Public

Document Properties

Client Stader
Title Smart Contract Audit Report
Target Stader FTMStaking
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Shulin Bie, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 19, 2022 Xuxian Jiang Final Release
1.0-rc1 April 1, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2022-123

Public

Contents

1 Introduction 4
1.1 About Stader . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Possible Costly LPs From Improper Pool Initialization 11
3.2 Generation of Meaningful Events For Setting Changes 12
3.3 Penalty Consistency Between FTMStaking and SFC 13
3.4 Trust Issue of Admin Keys . 15

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2022-123

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the FTMStaking support in the Stader protocol, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About Stader

Stader aims to build native staking smart contracts across multiple chains including Terra, Solana,
among others, and also develop an economic ecosystem to grow and develop solutions like YFI-style
farming with rewards, launchpads, gaming with rewards, and liquid staking solutions. The audited
FTMStaking support allows protocol users to stake their FTM to get FTMx, which represents the ownership
of the staking pool and enables the claim of staking rewards. The basic information of the audited
protocol is as follows:

Table 1.1: Basic Information of The FTMStaking Protocol

Item Description
Issuer Stader

Website https://staderlabs.com
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 19, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

4/18 PeckShield Audit Report #: 2022-123

Public

• https://github.com/stader-labs/stader-ftmx-v0.git (0f47c9f)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/stader-labs/stader-ftmx-v0.git (ab6fc3c)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/18 PeckShield Audit Report #: 2022-123

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2022-123

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2022-123

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2022-123

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the FTMStaking

support of the Stader protocol. During the first phase of our audit, we study the smart contract
source code and run our in-house static code analyzer through the codebase. The purpose here is
to statically identify known coding bugs, and then manually verify (reject or confirm) issues reported
by our tool. We further manually review business logics, examine system operations, and place
DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/18 PeckShield Audit Report #: 2022-123

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 3 low-severity vulnerabilities.

Table 2.1: Key Stader FTMStaking Audit Findings

ID Severity Title Category Status
PVE-001 Low Possible Costly LPs From Improper Pool

Initialization
Time and State Resolved

PVE-002 Low Generation of Meaningful Events For
Setting Changes

Coding Practices Resolved

PVE-003 Low Penalty Consistency Between FTMStak-
ing and SFC

Coding Practices Resolved

PVE-004 Medium Trust on Admin Keys Security Features Resolved

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/18 PeckShield Audit Report #: 2022-123

Public

3 | Detailed Results

3.1 Possible Costly LPs From Improper Pool Initialization

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: FTMStaking

• Category: Time and State [5]

• CWE subcategory: CWE-362 [3]

Description

The FTMStaking protocol allows users to deposit supported assets and get in return the share to
represent the pool ownership. While examining the share calculation with the given deposits, we
notice an issue that may unnecessarily make the pool share extremely expensive and bring hurdles
(or even causes loss) for later depositors.

To elaborate, we show below the getFTMxAmountForFTM() routine, which is part of deposit logic.
This routine is used for participating users to deposit the supported assets and get respective pool
shares in return. The issue occurs when the pool is being initialized under the assumption that the
current pool is empty.

210 function getFTMxAmountForFTM(uint256 ftmAmount)
211 public
212 view
213 returns (uint256)
214 {
215 uint256 totalFTM = totalFTMWorth ();
216 uint256 totalFTMx = FTMX.totalSupply ();
217
218 if (totalFTM == 0 || totalFTMx == 0) {
219 return ftmAmount;
220 }
221 return (ftmAmount * totalFTMx) / totalFTM;
222 }

Listing 3.1: FTMStaking::getFTMxAmountForFTM()

11/18 PeckShield Audit Report #: 2022-123

Public

Specifically, when the pool is being initialized (line 217), the share value directly takes the value
of ftmAmount (line 218), which is manipulatable by the malicious actor. As this is the first deposit,
the current total supply equals the calculated share = ftmAmount = 1 WEI. With that, the actor can
further deposit a huge amount of the underlying assets with the goal of making the pool share
extremely expensive.

An extremely expensive pool share can be very inconvenient to use as a small number of 1 Wei

may denote a large value. Furthermore, it can lead to precision issue in truncating the computed pool
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the pool without returning any pool tokens.

This is a known issue that has been mitigated in popular Uniswap. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial liquidity provider, but this cost is expected to be low and acceptable.

Recommendation Revise current deposit logic to defensively calculate the share amount when
the pool is being initialized. An alternative solution is to ensure a guarded launch process that
safeguards the first deposit to avoid being manipulated.

Status The issue has been resolved as the team will ensure a guarded launch process that
safeguards the first deposit to avoid being manipulated.

3.2 Generation of Meaningful Events For Setting Changes

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: FTMStaking

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the FTMStaking contract as an example. This contract is designed to
allow protocol users to staking the FTM asset. While examining the events that reflect the changes

12/18 PeckShield Audit Report #: 2022-123

Public

of various settings, we notice there is a lack of emitting important events that reflect important
setting changes. As an example, when the _withdrawalDelay parameter is updated in FTMStaking::

setWithdrawalDelay(), there is no respective event emitted to reflect the withdrawal delay update
(line 382).

365 function setValidatorPicker(IValidatorPicker picker) external onlyOwner {
366 validatorPicker = picker;
367 }

369 /**
370 * @notice Set epoch duration (onlyOwner)
371 * @param duration the new epoch duration
372 */
373 function setEpochDuration(uint256 duration) external onlyOwner {
374 _epochDuration = duration;
375 }

377 /**
378 * @notice Set withdrawal delay (onlyOwner)
379 * @param delay the new delay
380 */
381 function setWithdrawalDelay(uint256 delay) external onlyOwner {
382 _withdrawalDelay = delay;
383 }

Listing 3.2: Example Setters in FTMStaking

Recommendation Properly emit the respective events when the associated settings are up-
dated.

Status This issue has been fixed in the following commit: 9653402.

3.3 Penalty Consistency Between FTMStaking and SFC

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: FTMStaking

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

The FTMStaking contract enforces certain penalty that will be charged when there is a need to
undelegate locked assets. When analyzing the logic to compute penalty amount, we notice certain
inconsistency in FTMStaking and the underlying Special Fee Contract (SFC) contract.

13/18 PeckShield Audit Report #: 2022-123

https://github.com/stader-labs/stader-ftmx-v0/commit/9653402

Public

To elaborate, we show below the two related functions FTMStaking::calculatePenalty and SFC

::unlockStake(). The inconsistency comes from the way to compute the unlock penalty in these
two contracts. Specifically, the FTMStaking applies the pro-rata penalty share after summing up the
penalty for all supported vaults while the SFC computes the pro-rata within the vault before the final
summing-up. Though the inconsistency might be minimal, it is still helpful to maintain necessary
consistency.

263 function calculatePenalty(uint256 amountToUndelegate)
264 public
265 view
266 returns (uint256)
267 {
268 uint256 totalStake;
269 uint256 totalPenalty;
270 uint256 vaultCount = maxVaultCount ();
271 for (uint256 i = 0; i < vaultCount; i = _uncheckedInc(i)) {
272 address vault = _allVaults[i];
273 if (vault != address (0)) {
274 uint256 toValidatorID = Vault(vault).toValidatorID ();
275 totalStake += SFC.getStake(vault , toValidatorID);
276 if (SFC.isLockedUp(vault , toValidatorID)) {
277 totalPenalty += _getUnlockPenalty(vault , toValidatorID);
278 }
279 }
280 }
281 return (amountToUndelegate * totalPenalty) / totalStake;
282 }

Listing 3.3: FTMStaking::calculatePenalty()

833 function unlockStake(uint256 toValidatorID , uint256 amount) external returns (
uint256) {

834 address delegator = msg.sender;
835 LockedDelegation storage ld = getLockupInfo[delegator][toValidatorID];
836
837 require(amount > 0, "zero amount");
838 require(isLockedUp(delegator , toValidatorID), "not locked up");
839 require(amount <= ld.lockedStake , "not enough locked stake");
840 require(_checkAllowedToWithdraw(delegator , toValidatorID), "outstanding sFTM

balance");
841
842 _stashRewards(delegator , toValidatorID);
843
844 uint256 penalty = _popDelegationUnlockPenalty(delegator , toValidatorID , amount ,

ld.lockedStake);
845
846 ld.lockedStake -= amount;
847 _rawUndelegate(delegator , toValidatorID , penalty);
848
849 emit UnlockedStake(delegator , toValidatorID , amount , penalty);
850 return penalty;

14/18 PeckShield Audit Report #: 2022-123

Public

851 }
852
853 function _popDelegationUnlockPenalty(address delegator , uint256 toValidatorID ,

uint256 unlockAmount , uint256 totalAmount) internal returns (uint256) {
854 uint256 lockupExtraRewardShare = getStashedLockupRewards[delegator][

toValidatorID]. lockupExtraReward.mul(unlockAmount).div(totalAmount);
855 uint256 lockupBaseRewardShare = getStashedLockupRewards[delegator][toValidatorID

]. lockupBaseReward.mul(unlockAmount).div(totalAmount);
856 uint256 totalPenaltyAmount = lockupExtraRewardShare + lockupBaseRewardShare / 2;
857 uint256 penalty = totalPenaltyAmount.mul(unlockAmount).div(totalAmount);
858 getStashedLockupRewards[delegator][toValidatorID]. lockupExtraReward =

getStashedLockupRewards[delegator][toValidatorID]. lockupExtraReward.sub(
lockupExtraRewardShare);

859 getStashedLockupRewards[delegator][toValidatorID]. lockupBaseReward =
getStashedLockupRewards[delegator][toValidatorID]. lockupBaseReward.sub(
lockupBaseRewardShare);

860 if (penalty >= unlockAmount) {
861 penalty = unlockAmount;
862 }
863 return penalty;
864 }

Listing 3.4: SFC::unlockStake()

Recommendation Be consistent in the above penalty computation.

Status The issue has been resolved and the team clarifies that the penalty consistency was not
required in the version shared earlier.

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: FTMStaking

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the FTMStaking protocol, there is a special administrative account, i.e., owner. This owner account
plays a critical role in governing and regulating the system-wide operations (e.g., configure various
settings, pause/unpause the protocol, as well as update the vault owner). It also has the privilege to
control or govern the flow of assets within the protocol contracts. In the following, we examine the
privileged account and their related privileged accesses in current contracts.

372 function setEpochDuration(uint256 duration) external onlyOwner {

15/18 PeckShield Audit Report #: 2022-123

Public

373 _epochDuration = duration;
374 }

376 /**
377 * @notice Set withdrawal delay (onlyOwner)
378 * @param delay the new delay
379 */
380 function setWithdrawalDelay(uint256 delay) external onlyOwner {
381 _withdrawalDelay = delay;
382 }

384 /**
385 * @notice Set the owner of an arbitrary input vault (onlyOwner)
386 * @param vault the vault address
387 * @param newOwner the new owner address
388 */
389 function updateVaultOwner(address vault , address newOwner)
390 external
391 onlyOwner
392 {
393 // Needs to support arbitrary input address to work with expired/matured vaults
394 Vault(vault).updateOwner(newOwner);
395 }

Listing 3.5: Example Privileged Operations in FTMStaking

We understand the need of the privileged functions for proper contract operations, but at the
same time the extra power to these privileged accounts may also be a counter-party risk to the
contract users. Therefore, we list this concern as an issue here from the audit perspective and highly
recommend making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team. The team clarifies that the admin key has
been transferred to a multi-sig account.

16/18 PeckShield Audit Report #: 2022-123

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the FTMStaking support in the
Stader protocol. The audited FTMStaking allows protocol users to stake their FTM to get FTMx, which
represents the ownership of the staking pool and enables the claim of staking rewards. The current
code base is clearly organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

17/18 PeckShield Audit Report #: 2022-123

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2022-123

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Stader
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Costly LPs From Improper Pool Initialization
	Generation of Meaningful Events For Setting Changes
	Penalty Consistency Between FTMStaking and SFC
	Trust Issue of Admin Keys

	Conclusion
	References

